Strategy building in farm animal practices – a look into the future

Theo Meuwissen

Norwegian Univ. Life Sciences, Ås, Norway
Introduction

future challenges for livestock production:
– The climate crisis
– The food/feed crisis
– The energy crisis
– The water crisis
– The land crisis
AIM

- Discuss impact of these crises
- Discuss animal breeding strategies to address these crises
- Perspective: global with special emphasis on Nordic countries
 - (Globalisation makes these crises also affect us even if some do not primarily affect us)
The climate crisis

• Global warming: 3 degrees in 21st century
 – Difference: Amsterdam (10)– Madrid (13)
• Direct problem: for already hot climates
• Nordic countries: feed prices increase
 – livestock production still affordable?
• Puts costs on GHG emissions
 – Reduces efficiency of livestock production
The food/feed crisis

- World population: 7 => 9 billion by 2050
- Climate change
 - Best land => urbanisation; plant food production
 - marginalises land
- Feed prices increase dramatically
 - Partly compensated by increased food prices
 - danger: livestock products => niche products
 - Costs of low quality feeds remain low
Water crisis

• Temperature rises → irrigation → water crisis
 – Mainly a problem in hotter climates
 – Drive up feed prices
 – Marginalises agricultural land
Energy crisis

- Energy dramatically more expensive
- Fertiliser more expensive
 - Marginalises land
- Competition feeds use as biofuels
Land crisis

- Result of other crises:
 - Much of livestock-land becomes more marginal
 - Temperature rise
 - Water shortage
 - Fertiliser shortage
 - Current fertile land
 - Used for crop/food production
 - Urbanisation
Challenges for livestock production

- Production
 - Keep pace with population growth Nordic countries

- Cost-effectiveness
 - Prices of inputs
 - Competition with plant products
 - E.g. meat ingredients in foods are replaced by plants

- Use waste products as input and marginal land

- Reduce environmental impact
 - GHG emissions (currently 7% of total emissions)

- Animal welfare & health
Animal Breeding aims:

- Adapt genetics of animals to these challenges
 - Cost effectiveness
 - Feed efficiency
 - Use of waste products (Gxfeed interactions)
 - GHG emissions down
 - Contribute to general emission reductions
 - Disease resistance
 - Challenge due to poorer feeds / marginal conditions
 - Improves also welfare
Animal Breeding Strategies

- Animal breeding
 - one of the tools for mitigation & adaptation
 - slow process
 - Important due to its accumulation improvements

- Challenges demand rapid changes:
 - Envisage new breeding directions asap
 - Need the fastest animal breeding techniques
 - Breed or cross substitution (use of AnGR)
 - Genomic selection (GS)
 - GS-intogression (combination of GS and AnGR)
Breed or cross substitution

- Requires Animal Genetic Resources (AnGR)

- In view of the crises:
 - Need efficient low input breed
 - Use of low quality & quantity of feeds
 - Use of marginal land

- Many endangered breeds fullfill these requirements
 - Were replaced by high-input / high output breeds
 - May see a come-back
Genomic selection (GS)

- Speeds up selection process dramatically
 - When generation interval can be reduced
 - When trait cannot be measured on candidate

- Useful to address GxE issues
 - E.g. production under low-input environment
 - Detect animals suited for low input environment without having records in such an environment
GS-introgression

- Introgression of 1 trait from ‘inferior’ breed

![Graph showing comparison between traditional selection, genomic selection, and crossbreeding with an inferior breed.](image-url)

- Tradit. Selection; _____ Genome selection

Odegard et al. 2008
Selection against GHG emissions
- Need large scale recording tools
- Need estimates of genetic parameters
- GS may be particularly useful
- Since GHG emission are difficult to record
- AnGR may be useful
- Compare different breeds/crosses for GHG emission
- Possible use of GS-introgression
Animal Breeding & adaptation: GxE

- **Strategy:**
 - adapt animals to the changing environments

- **Investigate GxE:**
 - Temperature (hot climates)
 - Water availability
 - Feed quality

- **Breed comparison with respect to GxE**
 - Within breed compare (sire) families
Biological efficiency of different cattle breeds (Jenkins and Ferrell, 1994)

Efficiency, g/kg DM

Dry Matter Intake, kg/yr

A = Aberdeen Angus, C = Charolais, H = Hereford L = Limousin S = Simmental
Adaptation: New production systems

- Rapidly changing production environments
 - Re-think the production system
 - Eg. Dual purpose production of milk & beef instead of using specialised dairy and beef breeds?
 - Feed processing technology: feeds come in many forms
 - Low input & High efficiency

- Will require different animals
 - Need AnGR (possibly GS-introgression)
 - Need rapid genetic change
Conclusions

• Future challenges in the form of 5 crises
 – The climate crisis
 – The food/feed crisis
 – The energy crisis
 – The water crisis
 – The land crisis

• Many challenges ahead of livest. prod:
 – Need to redesign the production system
 – Need research into the challenges / new design
 – Incl. changing genetics of animals
Conclusions (Anim. Breed.)

- Animal breeding: rapid genetic change
 - Breed/cross substitution: AnGR
 - Genomic selection
 - GS-introgression: get 1 trait out of AnGR
 - Foresee new breeding goal asap

- Disease resistance and animal welfare
 - Maintain a high level
Conclusions (anim. Breed.)

- Reduce environmental footprint:
 - Direct selection against GHG emissions
 - Possibly by breed substitution or GS-introgression
 - Indirect by increasing efficiency

- Animal Breeding : Adaptation
 - GxE interactions : select for changing environm.
 - For animals that are robust to environm. changes
 - Re-designing the livestock production systems
 - Includes changing genetics of animals
Main future challenge for Animal Breeders:

Breed animals which produce under poor and very variable environmental conditions (feed quality, marginal land usage) with an efficiency that exceeds the current.